THE UPPER PATH INDUCED GEODETIC NUMBER OF SOME GRAPHS

A. Arul Asha ${ }^{1}$, S. Joseph Robin ${ }^{2}$
Department of Mathematics, Scott Christain College, Nagercoil, India.

Abstract

Let G be a connected graph. A path induced geodetic set S in a connected graph G is called a minimal path inducedset if no proper subset of S is a path induced geodetic set of G. The upper path inducednumberpign ${ }^{+}(G)$ is the maximum cardinality of a minimal path induced geodetic set of G.Some properties satisfied by this concept arestudied. It isshownfor any positive integers $5<a \leq b$, there exists a connected graph G such that $\operatorname{pign}(G)=a$ and $\operatorname{pign}^{+}(G)=b$.

KEYWORDS: geodesic, geodetic number, connected geodetic number, path induced geodeticnumber, path induced geodesicgraphs.upperpath induced geodeticnumber.

AMS Subject Classification: 05C12.

1. INTRODUCTION

By a graph $G=(V, E)$, we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and qrespectively. For basic graph theoreticterminology, werefer to Harary [1].The distance $d(u, v)$ betweentwovertices u and v in a connected graph G is the length of a shortest $u-v$ path in G. An $u-v$ path of length $d(u, v)$ iscalled an u-vgeodesic. A vertex xissaid to lie on a $u-v$ geodesic P if x isa vertex of Pincluding the vertices u and v. The eccentricitye (v) of a vertex v in G is the maximum distance from v and a vertex of G. The minimum eccentricity among the vertices of G is the radius, $\operatorname{rad} \operatorname{Gor}(G)$ and the maximum eccentricityisitsdiameter, diam G of G.Twovertices u and v of G are antipodal if $d(u, v)=\operatorname{diam} G \operatorname{ord}(G)$. A vertex v issaid to be an extremevertex if the subgraphinduced by itsneighboursiscomplete. A geodetic set of G is a set $S \subseteq V(G)$ such that every vertex of G iscontained in a geodesicjoiningsome pair of vertices in S. The geodetic number $g(G)$ of G is the minimum order of its geodetic sets and geodetic set of order $g(G)$ is called $g-$ set or geodetic basis. The geodetic number of a graph wasintroducedand studiedin [1,2,3,4].A connectedgeodetic set of a graph G is a geodetic set S such that the subgraph $G[S]$ induced by S is connected. The minimum cardinality of a connected geodetic set of G is the connected geodetic number of G and is denoted by $g_{c}(G)$. A connected geodetic set of cardinality $g_{c}(G)$ is called $a g_{c}$-set of G or a connected geodetic basis of G.The connected geodeticnumber of a graph wasintroduced and studiedin $[5,7,8]$.A connected geodetic set $S \subseteq V(G)$ is said to be a path induced geodetic(pig) set of G if $<$ $S>$ contais a path P with $V(P)=S$. The minimum cardinality of a path induced geodetic set of G is called a path induced geodetic number of G and is denoted by pign (G).The path induced geodetic number of a graph wasintroduced inand studied[6].The concept on path-induced geodetic numbers of graphs can be applied in travel time saving, facility location, goods distribution, and other things in which this concept will be of great help.First, we have to remark that not all connected graphs have path-induced geodetic set.Note thatthe pathinducedgeodetic set does not exists for all connected graphs.For exampleatreewith more thantwovertices do not have a the pathinducedgeodetic set. A connected graph G is said to be a path induced geodesic graph if G has a path induced geodetic set.The followingtheoremisused in sequel.

Theorem1.1[6].Eachextreme vertex of a graph connected G belongs to every path induced geodetic set of G. In particular, each end-vertex of G belongs to every path induced geodetic set of G.

2.THE UPPER PATH INDUCED GEODETIC NUBER OF SOME GRAPHS

Definition 2.1.Let G be a connected graph. A path induced geodetic set S in a connected graph G is called a minimal path inducedset if no proper subset of S is a path induced geodetic set of G. Theupper path inducednumberpign ${ }^{+}(G)$ is the maximum cardinality of a minimal path induced geodetic set of G.

Example 2.2.For the graph G given in Figure 2.1, $S_{1}=\left\{v_{1}, v_{2}, v_{6}, v_{7}, v_{8}\right\}, S_{2}=\left\{v_{1}, v_{3}, v_{6}, v_{7}, v_{8}\right\}, S_{3}=$ $\left\{v_{1}, v_{4}, v_{6}, v_{7}, v_{8}\right\}, S_{4}=\left\{v_{1}, v_{5}, v_{6}, v_{7}, v_{8}\right\}$ and $S_{5}=\left\{v_{2}, v_{3}, v_{5}, v_{4}, v_{6}, v_{7}, v_{8}\right\}$ are the only five minimalpath induced setsof G. Hence pign ${ }^{+}(G)=7$.

Remark 2.3.Every minimum path induced set of G is a minimal path induced set of G. The converse is not true. For the graph G given in Figure 2.1, $S_{5}=\left\{v_{2}, v_{3}, v_{5}, v_{4}, v_{6}, v_{7}, v_{8}\right\}$ is a minimal path induced setand it is not a minimum path induced set of G.

Theorem 2.4.For a connected graph $G, 2 \leq \operatorname{pign}(G) \leq \operatorname{pign}^{+}(G) \leq p$.
Proof. Any path induced geodetic set needs at least two vertices and so pign $(G) \geq 2$. Since every minimum path induced geodetic set is a minimal connected geodetic set, pign $(G) \leq \operatorname{pign}^{+}(G)$. Also, since $V(G)$ induces a path induced geodetic set of G, it is clear that $\operatorname{pign}^{+}(G) \leq p$. Thus $2 \leq \operatorname{pign}(G) \leq \operatorname{pign}^{+}(G) \leq p$.

Remark 2.5. For the graph $G=P_{2}, \operatorname{pign}(G)=2$. For the path $G=P_{p}, \operatorname{pign}^{+}(G)=p$ Also, all the inequalities in Theorem 2.4 are strict. For the graph G given in Figure 2.1, $\operatorname{pign}(G), \operatorname{pign}^{+}(G)=7$, andp $=8$ so that $2<\operatorname{pign}(G)<\operatorname{pign}^{+}(G)<p$.

Theorem 2.6.Let G be a path induced geodesic graph. Then $\operatorname{pign}(G)=p$ if and only if $\operatorname{pign}^{+}(G)$.
Proof.Let pign ${ }^{+}(G)=p$. Then $S=V(G)$ is the unique minimal path induced geodetic set of G. Since no proper subset of S is anpath induced geodetic set, it is clear that S is the unique minimum path induced geodetic set of G andso pign $(G)=p$. The converse follows from Theorem 2.5 .

Theorem 2.7.Let G be a path induced geodesic graph. Then every extreme vertex of a connected graph G belongs to every minimal path induced geodetic set of G.

Proof. Since every minimal path induced geodetic set is a path induced geodetic set, the result follows from Theorem 1.1.

Theorem 2.8.Let G be a path induced geodesic graph. Thenevery cut-vertex of a connected graph G belongs to every minimal path induced geodetic set of G.

Proof.Let Sbe aminimal path induced geodetic set of G and v bea cut vertex of G. We prove every component of $G-v$ contains an element of S.Suppose thatthereis a component B of $G-v$ such that B contains no vertex of S. Let $u \in V(B)$.Since S is a path inducedgeodeticset, thereexists a pair of vertices x and y in S such that u lies on some $x-y$ geodesic $P: x=$ $u_{0}, u_{1}, \ldots, u, \ldots, u_{n}=y$ in G.Since v is a cut-vertex of G, the $x-u$ subpath of P and the $u-y$ subpath of P both contain v, it follows that P is not a path, contrary to assumption. Thereforeevery component of $G-v$ contains an element of S. Next we prove that $v \in S$. Let $G_{1}, G_{2}, \ldots, G_{r}(r \geq 2)$ be the components of $G-\{v\}$.SinceScontains at least one elementfromeach $G_{i}(1 \leq i \leq$ $r)$). Since $<S>$ isconnected, itfollowsthat $v \in S$.

Corollary 2.9. For a connected graph G with k extreme vertices and l cut-vertices, $\operatorname{pign}^{+}(G) \geq \max \{2, k+l\}$.
Proof. This follows from Theorems 2.7 and 2.8.
Corollary 2.10.For the complete graph $G=K_{p}, \operatorname{pign}^{+}(G)=p$.
Proof.This follows from Corollary 2.9.
Corollary 2.10. For any path $G=P_{p}, \operatorname{pign}^{+}(G)=\operatorname{pign}(G)=p$.
Proof.This follows from Corollary 2.9.
Theorem 2.11. For the complete bipartite graph $G=K_{m, n}(2 \leq m \leq n), \operatorname{pign}^{+}(G)=4$.
Proof.Without loss of generality, let $m \leq n$. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$, and $Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ be a bipartition of G. Let S any path induced geodetic set of G. We prove that S contains at least two vertices from X and at least two vertices from Y. Suppose that S contains at most one vertex from X and at most one vertex from Y. Then S is not a path induced geodetic set of G, which is a
contradiction. Therefore S contains at least two vertices from X and at least two vertices from Y. We prove that $\operatorname{pign}^{+}(G)=4$. Suppose pign $^{+}(G) \geq 4$. Then there exists a minimal path induced geodetic set S_{1} of G with $\left|S_{1}\right| \geq 5$. Since S_{1} contains at least two vertices from X and at least two vertices from Y, without loss of generality, let $x_{1}, x_{2}, x_{3}, y_{1}, y_{2} \in S_{1}$. Then $S_{2}=S_{1}-\left\{x_{3}\right\}$ is a path induced geodetic set of G with $S_{2} \subset S_{1}$, which is a contradiction to S_{1} a minimal path induced geodetic set of G.Thus $\operatorname{pign}^{+}(G)=4$.

Theorem 2.12. For the cycle $=C_{p}$, pign $^{+}(G)= \begin{cases}\frac{p}{2}+1 & \text { if } p \text { is even } \\ \left\lfloor\frac{p}{2}\right\rfloor+2 & \text { if } p \text { is odd. }\end{cases}$

Proof.

Case 1. Suppose that p is even. Let $p=2 n$. Let $C_{2 n}: v_{1}, v_{2}, v_{3}, \ldots, v_{2 n}, v_{1}$ be the cycle of order $2 n$. Let $S=$ $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n+1}\right\}$.Then S is a connected geodetic set of G and $P: v_{1}, v_{2}, v_{3}, \ldots, v_{n+1}$ is a path in $<S>$ with $V(P)=S$. Therefore S is a path induced geodetic set of G.We prove that S is a minimal path induced geodetic set of G.Since v_{n+1} is the antipodal vertex of $v_{1},\left\{v_{1}, v_{n+1}\right\}$ is a geodetic set of G. Since no other elements of S are antipodal, there is no subset of S is a path induced geodetic set o G.Hence it follows that S is a minimal path induced geodetic set of G and so $\operatorname{pign}^{+}(G) \geq|S|=n+$ $1=\frac{p}{2}+1$.

Now, we showthat $\operatorname{pig}^{+}(G)=n+1$. Otherwise, there is a minimal path induced geodetic set et W such that $|W|=m>$ $n+1$. Since W is a path induced geodetic set of G, the subgraph induced by W is a path say $v_{i+1}, v_{i+2}, \ldots, v_{i+m}$. It is clear that $T=\left\{v_{i+1}, v_{i+2}, \ldots, v_{i+m+1}\right\}$ is a path induced geodetic set of G and so W is not a minimal connected geodetic set of G, which is a contradiction. Thus $\operatorname{pign}^{+}(G)=n+1$

Case 2. Suppose that p is odd and let $p=2 n+1$.Let $C_{2 n+1}: v_{1}, v_{2}, v_{3}, \ldots, v_{2 n+1}, v_{1}$ be the cycle of order $2 n+1$. Let $S=$ $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n+2}\right\}$. Then, as in Case 1 it is seen that S is a minimal path induced geodetic set of G and $\operatorname{pign}^{+}(G)=n+2=$ $\left\lfloor\frac{p}{2}\right\rfloor+2$.

Theorem 2.13. For the wheel $G=K_{1}+C_{p-1,}(p \geq 4), \operatorname{pign}^{+}(G)=p-2$.
Proof: Let C_{p-1} be a $v_{1}, v_{2}, \ldots, v_{p-1}$ and x be the vertex of K_{1}. Then x is a vertex of degree $p-1$. The pig-set of G is $S_{i}=$ $V(G)-\left\{x, v_{i}\right\}(1 \leq i \leq p-1)$ so that $\operatorname{pign}(G)=p-2$. We prove that $\operatorname{pign}^{+}(G) \geq p-2$. By Theorem 2.6, pign $(G)=p-$ 1. Let S be a minimal path induced geodetic setof G with $|p-1|$. If $x \in S$, S is not a pathinducedgeodetic set of G.If $x \in S$, then $S_{1}=S-\{y\}$, where $y \neq x$ is a path induced geodetic setof G with $S_{1} \subset S$. Whichis a contradiction to S a minimal path induced geodetic setof G.Thereforepign ${ }^{+}(G)=(G)=p-2$.

Theorem 2.14. For any positive integers $5<a \leq b$, there exists a connected graph G such that $\operatorname{pign}(G)=a$ and $\operatorname{pign}^{+}(G)=b$.

Proof. If $a=b$, let $G=P_{p}$. Then by Corollary 2.10, $\operatorname{pign}(G)=a=\operatorname{pign}^{+}(G)$.
Let $5<a<b$.Let $P_{a}: u_{1}, u_{2}, \ldots, u_{a}$ be a path of length $a-1$. Let $H=K_{b-a+1}$ and $V(H)$ be $v_{1}, v_{2}, \ldots, v_{b-a+1}$. Let G be the graph obtained from P_{a} and $V(H)$ by joining u_{1} and u_{3} with each $v_{i}(1 \leq i \leq b-a+1)$, there by producing the graph G of Figure 2.2.First we show that $\operatorname{pign}(G)=a$. Let $S=\left\{u_{3}, u_{4}, \ldots, u_{a}\right\}$ be the set of all cut vertices and extreme vertices of G. By Theorems 2.6 and 2.8 , every path induced geodetic set of G contains S. It is clear that S is not a path induced geodetic set of G.It is easily verified that $S \cup\{x\}$, where $x \notin S$ is not a path induced geodetic set of G and so $\operatorname{pign}(G) \geq a$. Let $S_{1}=S \cup$ $\left\{u_{1}, u_{2}\right\}$.Then S_{1} is a path induced geodetic set of G so that $\operatorname{pign}(G)=a$. Next we show that $\operatorname{pign}^{+}(G)=b$.

Figure 2.4
u_{2}

The pig-sets of G are $S_{i}=S \cup\left\{u_{1}\right\} \cup\left\{v_{i}\right\}(1 \leq i \leq b-a+1) \quad$ and $\quad S_{1}=S \cup\left\{u_{1}, u_{2}\right\}$ Let $\quad W=S \cup$ $\left\{v_{1}, v_{2}, \ldots, v_{b-a+1}, u_{2}\right\}$. It is clear that W is a path induced geodetic set of G. Now, we show that W is a minimal is a path induced geodetic set of G. Assume, to the contrary, that W is not a minimal is a path induced geodetic set of G. Then there is a proper subset T of W such that T is a path induced geodetic set of G. Let $v \in W$ and $v \notin T$. By Theorems 2.6 and 2.8, it is clear $v=u_{2}$ orv $=v_{i}$, for some $i=1,2, \ldots, b-a+1$.Clearly, this v does not lie on a geodesic joining any pair of vertices of T and so T is not a path induced geodetic set of G, which is a contradiction. Thus S_{2} is a is a path induced geodetic set of G and so $\operatorname{pign}^{+}(G) \geq$ b Since the order of the graph is b, it follows that $\operatorname{pign}^{+}(G)=b$.

REFERENCES

[1] F. Buckley and F. Harary, Distance in Graphs, Addition-Wesley, Redwood City, CA, 1990.
[2] G. Chartrand and P. Zhang, The forcing geodeticnumber of a graph, Discuss. Math. Graph Theory 19 (1999) 45-58.
[3] G. Chartrand, F. Harary and P. Zhang, On the geodeticnumber of a graph, Networks 39 (2002) 1-6.
[4] F. Harary, E. Loukakis and C. Tsouros, The geodeticnumber of a graph, Math. Comput. Modelling 17 (1993) 89-95.
[5] D. A. Mojdeh and N. J. Rad, Connected Geodomination in Graphs, Journal of Discrete Mathematical Sciences \& Cryptography Vol. 9 (2006), No.1, 177-186.
[6] RuthlynN.Villarante and Imelda S. Aniversario, The pathinducedgeodeticnumbers of some graphs, JUSPS-A Vol. 29(5),(2017). 196-204.
[7] A. P. Santhakumaran, P.Titus and J. John, The upperconnectedGeodeticnumber and Forcing connected geodeticNumber of a Graph, DiscreteAppliedMathematics 157(7),(2009) 1571-1580.
[8] A. P. Santhakumaran, P.Titus and J. John, On the connectedgeodeticnumber of a graph, Journal of Com. Math. Com. comp 69,(2009) 219-229.

